On-site education of VEGF-recruited monocytes improves their performance as angiogenic and arteriogenic accessory cells
نویسندگان
چکیده
Adult neovascularization relies on the recruitment of monocytes to the target organ or tumor and functioning therein as a paracrine accessory. The exact origins of the recruited monocytes and the mechanisms underlying their plasticity remain unclear. Using a VEGF-based transgenic system in which genetically tagged monocytes are conditionally summoned to the liver as part of a VEGF-initiated angiogenic program, we show that these recruited cells are derived from the abundant pool of circulating Ly6C(hi) monocytes. Remarkably, however, upon arrival at the VEGF-induced organ, but not the naive organ, monocytes undergo multiple phenotypic and functional changes, endowing them with enhanced proangiogenic capabilities and, importantly, with a markedly increased capacity to remodel existing small vessels into larger conduits. Notably, monocytes do not differentiate into long-lived macrophages, but rather appear as transient accessory cells. Results from transfers of presorted subpopulations and a novel tandem transfer strategy ruled out selective recruitment of a dedicated preexisting subpopulation or onsite selection, thereby reinforcing active reprogramming as the underlying mechanism for improved performance. Collectively, this study uncovered a novel function of VEGF, namely, on-site education of recruited "standard" monocytes to become angiogenic and arteriogenic professional cells, a finding that may also lend itself for a better design of angiogenic therapies.
منابع مشابه
Vascular endothelial growth factor-A-induced chemotaxis of monocytes is attenuated in patients with diabetes mellitus: A potential predictor for the individual capacity to develop collaterals.
BACKGROUND Vascular endothelial growth factor-A (VEGF-A) acts on endothelial cells and monocytes, 2 cell types that participate in the angiogenic and arteriogenic process in vivo. Thus far, it has not been possible to identify differences in individual responses to VEGF-A stimulation because of the lack of an ex vivo assay. METHODS AND RESULTS We report a chemotaxis assay using isolated monoc...
متن کاملVEGF-Induced Adult Neovascularization: Recruitment, Retention, and Role of Accessory Cells
Adult neovascularization relies on the recruitment of circulating cells, but their angiogenic roles and recruitment mechanisms are unclear. We show that the endothelial growth factor VEGF is sufficient for organ homing of circulating mononuclear myeloid cells and is required for their perivascular positioning and retention. Recruited bone marrow-derived circulating cells (RBCCs) summoned by VEG...
متن کاملNonendothelial mesenchymal cell-derived MCP-1 is required for FGF-2-mediated therapeutic neovascularization: critical role of the inflammatory/arteriogenic pathway.
OBJECTIVE Monocyte chemoattractant protein-1 (MCP-1) is a C-C chemokine that is known as an inflammatory/arteriogenic factor. Angiogenesis contributes to the inflammatory process; however, the molecular and cellular mechanisms of the links among the inflammatory pathway, arteriogenesis, and angiogenesis have not been well elucidated. METHODS AND RESULTS Using murine models of fibroblast growt...
متن کاملCYCLIC NUCLEOTIDES CONTROL DIFFERENTIATION OF HUMAN MONOCYTES INTO EITHER HIGHLY ACCESSORY CELLS OR MACROPHAGES
Human peripheral blood monocytes have been found to undergo a transitory state of high accessory activity before they fully become macrophages. Time kinetics were done to follow this accessory potential. Studying the regulation of accessory activity, we have found that monocyte derived accessory cells (m-AC) pass through two phases of development, both of which are adversely controlled by ...
متن کاملSimultaneous Effect of Resistance Training and Endothelial Progenitor Cell Injection on the Expression of Vegf Angiogenic Factor and Its Relationship with Insulin Resistance in Diabetic Male Rats Induced By Stz
Background: Exercise and the simultaneous use of progenitor cells is a new strategy aimed for reducing diabetic disorders. One of the known mechanisms is angiogenic disorders caused by diabetes. Therefore, the present study was performed to determine the simultaneous effect of resistance training with endothelial progenitor cell injection on the expression of angiogenic factors in the skeletal ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 210 شماره
صفحات -
تاریخ انتشار 2013